Os compósitos têm sido muito usados no setor aeronáutico devido ao fato de se tratar de um material de alta rigidez e baixo peso. Eles consistem em uma composição de dois ou mais materiais que garantem propriedades de alto desempenho. Para a fixação de peças de compósitos se faz necessária a furação do material. O processo mais usado é o de furação por broca. Porém, esse processo geralmente causa danos ao material, em sua maioria na saída do furo, tais como delaminação e arrancamento de fibras(1).

Os componentes aeronáuticos, em sua totalidade, apresentam preferencialmente furos necessários para a fixação e montagem de suas partes(2). Assim, faz-se necessário o estudo de processos alternativos para a realização de furos no material compósito, visando à redução da ocorrência desses danos para garantir um acabamento melhor nos furos.

Uma tecnologia avançada de fabricação de furos como o fresamento helicoidal interpolado é uma boa alternativa na usinagem de materiais difíceis de cortar como, por exemplo, plástico reforçado com fibra de carbono(3).

Este é um processo de fabricação de furos em que a ferramenta segue uma trajetória helicoidal enquanto gira em torno de seu próprio eixo(4). A delaminação no fresamento helicoidal interpolado pode vir a ser menor do que em outros métodos de furação devido ao fato de que o fresamento reduz significativamente a força de impulso, o que consequentemente faz com que haja mais espaço para a expulsão de cavacos e menos fricção entre a ferramenta e a peça de trabalho(3).

Metodologia

Os ensaios foram realizados no Laboratório de Usinagem do Departamento de Engenharia Mecânica da Universidade Federal de São João del-Rei (UFSJ). Os testes foram feitos em um centro de fresamento ROMI Discovery 560 de três eixos, com velocidade de avanço rápido longitudinal e transversal de 30 m/min, rotação máxima de 10.000 rpm e potência máxima na árvore de 15 kW. Foram fabricados corpos de prova a partir de uma placa de compósito de fibra de carbono com espessura de 3,5 mm, e os furos foram feitos com diâmetro de 10 mm usando o processo de fresamento helicoidal interpolado (figura 1). Foi usada uma fresa de topo inteiriça e de metal duro com diâmetro de seis milímetros e seis dentes, o que leva à porcentagem de 60% do diâmetro final do furo. Os furos foram feitos sem o uso de fluidos refrigerantes.

Figura 1 – Setup experimental

Os parâmetros de corte foram definidos conforme o catálogo do fabricante da ferramenta, usando os recomendados para a usinagem de materiais não metálicos. Os parâmetros de entrada foram a velocidade de corte com dois níveis, avanço axial por dente com dois níveis e avanço tangencial por dente com dois níveis. A tabela 1 mostra os níveis e os respectivos valores que foram usados nos experimentos.

Tabela 1 – Parâmetros de entrada

As respostas de circularidade e cilindricidade foram obtidas por um medidor de forma Talyround 131 da Taylor Hobson, com apalpador de rubi, alta gama de dois milímetros, resolução normal de 30 nm e alta resolução de seis nm do laboratório de metrologia do DEMEC/UFSJ. O medidor de forma também é auxiliado por um computador e pelo software ultra da Taylor Hobson. A cilindricidade foi obtida considerando três planos ao longo do furo. A figura 2 mostra as medições feitas.

Figura 2 – Medição de circularidade e cilindricidade

Foi usada Metodologia de Superfície de Resposta para a modelagem dos experimentos e Planejamento Composto Central (CCD) para modelar e analisar os dados, usando o software Minitab. O modelo de resposta obtido por mínimos quadrados ordinários (OLS) não apresentou um bom ajuste para nenhuma das quatro respostas. Para o caso deste trabalho, a variância entre as respostas é heterocedástica, podendo ser usado então o método de mínimos quadrados (WLS), o que foi feito, garantindo um bom ajuste para o modelo de regressão das quatro respostas. O nível de significância adotado nas análises foi de 0,05.

Foi usado também o algoritmo do Gradiente Reduzido Generalizado (GRG) do solver do MS-Excel para a realização da Otimização Não Linear Restrita. Foi feita uma averiguação a olho nu de todos os corpos de prova para verificação da formação de delaminação na saída dos furos fabricados em material compósito.

Resultados e discussão

A tabela 2 apresenta o planejamento dos experimentos – Planejamento Composto Central (CCD) –, juntamente com as respostas de cilindricidade (Cylt ) e de circularidade (Ront ). A tabela 3 mostra os ajustes dos modelos de regressão obtidos para os coeficientes de determinação para as respostas de cilindricidade (Cylt ) e circularidade (Ront ). Percebe-se que o ajuste para Ront é ótimo e que para Cylt ele não apresentou uma resposta satisfatória, mas supera os 50% do coeficiente ajustado.

Tabela 2 – Planejamento CCD com as repostas de cilindricidade (Cylt ) e circularidade (Ront )

Tabela 3 – Ajuste dos modelos de regressão para as respostas de cilindricidade e circularidade

A tabela 4 mostra a análise de variância para a resposta de cilindricidade (Cylt ). O valor de p-valor foi menor que alfa (0,05) para o avanço tangencial por dente e a velocidade e corte, sendo esses os fatores mais significativos. A tabela 5 mostra a análise de variância para a resposta de circularidade (Ront ). O valor de p-valor foi menor que alfa (0,05) para a velocidade de corte, o termo quadrático do avanço axial por dente e o termo quadrático do avanço tangencial por dente, sendo esses os fatores mais significativos.

Tabela 4 – Análise de variância para a resposta para a cilindricidade (Cylt )

Tabela 5 – Análise de variância para a resposta para a circularidade (Ront )

A figura 3 mostra os gráficos dos efeitos principais e as interações para as respostas para a cilindricidade (Cylt ). Percebe-se que os fatores mais significativos são o avanço tangencial por dente, a velocidade e o corte. A figura 4 mostra os gráficos dos efeitos principais e as interações para as respostas para a circularidade (Ront ). Percebe-se que o fator mais significativo é a velocidade de corte. A figura 5 ilustra a averiguação feita em todos os corpos de prova, o que comprova que o fresamento helicoidal interpolado minimizou a formação de delaminação na saída dos furos fabricados em material compósito. A tabela 6 mostra os valores ótimos decodificados encontrados na otimização não linear restrita feita pelo algoritmo do Gradiente Reduzido Generalizado do solver do MS-Excel. Assim, foi possível definir os valores ótimos dos parâmetros variados nesse estudo, sendo estes: velocidade de corte de 75 m/min, avanço axial por dente de 0,08 µm/dente e avanço tangencial por dente de 0,08 mm/ dente para as respostas de circularidade e cilindricidade.

Figura 3 – Gráficos de efeitos principais e interações para cilindricidade (Cylt )

Figura 4 – Gráficos de efeitos principais e interações para circularidade (Ront )

Figura 5 – Corpo de prova em foco, para demonstrar a ausência de delaminação visível a olho nu

Tabela 6 – Níveis ótimos para os parâmetros estudados

Conclusão

Este trabalho abordou o processo de fresamento helicoidal interpolado para furação de peças de fibra de carbono. Foi usada a Metodologia de Superfície de Resposta para a modelagem dos dados e também a Otimização Não Linear Restrita para otimização das respostas. Os resultados mostraram que para a cilindricidade os fatores mais significativos são o avanço tangencial por dente e a velocidade e corte, e que para a circularidade os fatores mais significativos são velocidade de corte, o termo quadrático do avanço axial por dente e o termo quadrático do avanço tangencial por dente. O fresamento helicoidal interpolado minimizou a formação de delaminação na saída dos furos fabricados. Pela Otimização Não Linear foi possível definir os valores ótimos dos parâmetros variados nesse estudo, mencionados anteriormente.

Agradecimentos

Os autores agradecem à FAPEMIG pelo apoio financeiro por meio da concessão da bolsa de Iniciação Científica para a realização dessa pesquisa.

Responsabilidade pelas informações

Os autores são os únicos responsáveis pelas informações incluídas neste trabalho.

Referências

1] Durão, L. M. P., Gonçalves, D. J. S., Tavares, J. M. R. S., Alburquerque, V .H. C., Baptista, A. M., 2013. Dano na furação de placas carbono/epóxido. Revista, 17, 27–38.

2] Freitas, S. A., 2017. Estudo experimental do rosqueamento de materiais aeronáuticos. Dissertação (Mestrado). Universidade Federal de São João del Rei, São João del Rei.

3] Haiyan, W., Xuda, Q., Hao, L., Chengzu, R. , 2013. Analysis of cutting forces in helical milling of carbon fi ber– reinforced plastics. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, v. 227, n. 1, p. 62–74.

4] Pereira, R. B. D., Brandão, L. C., Paiva, A, P., Ferreira, J. R., Davim, J. P., 2017. A review of helical milling process. International Journal of Machine Tools and Manufacture, v. 120, n. May, p. 27–48.


Mais Artigos MM



Análise de fluido de corte orgânico à base de óleo de mamona aplicado à usinagem

Empresas do setor de usinagem pretendem reduzir os resíduos sólidos e líquidos provenientes de seus processos produtivos como, por exemplo, cavaco, resíduos de lubrifi cantes e borra proveniente do processo de retifi cação, visando alinhar suas operações aos conceitos de sustentabilidade. Foi então feito um estudo de possíveis fontes de óleo na natureza, e também os possíveis aditivos necessários para agregar a esse óleo as propriedades necessárias para a aplicação na usinagem. Foi escolhido o óleo de rícino 100% natural proveniente da mamona e foram feitas algumas misturas envolvendo emulsionantes e bactericidas até ser obtido um fl uido que apresentasse viscosidade adequada e boa capacidade de refrigeração.

23/02/2024


XIV Inventário Brasileiro de Máquinas-ferramentas

Nova edição do levantamento sobre o parque de máquinas industriais no setor de usinagem mapeou o setor com base em uma amostragem menor em relação a anos anteriores. Mas a análise aponta boa perspectiva de aquisição de máquinas para o próximo ano.

22/02/2024


Efeito do preenchimento de microrranhuras de ferramentas de corte com nanotubos de carbono

Na usinagem, praticamente toda a energia envolvida na remoção de material se manifesta na forma de calor. Assim, a vida da ferramenta é reduzida, pois os mecanismos de desgaste são intensificados. Os fluidos de corte são usados para minimizar a temperatura na ferramenta. Porém, eles são deletérios à saúde do operador de máquina e ao meio ambiente, além de necessitarem de água potável na sua diluição. Este trabalho tem como objetivo avaliar a inserção de um material de alta condutividade na ferramenta, que se estende da zona de corte até uma área afastada dela, visando dissipar o calor para o corpo da ferramenta. Propõe-se a confecção de microrranhuras, produzidas na superfície de saída e paralelas à aresta de corte, e o preenchimento delas com nanotubos de carbono.

05/02/2024